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Abstract The main objective of the study was to validate

the findings of previous cerebrospinal fluid (CSF) proteo-

mic studies for the differentiation between Alzheimer’s

disease (AD) dementia and physiological ageing. The most

consistently significant proteins in the separation between

AD dementia versus normal controls using CSF proteomics

were identified in the literature. The classification perfor-

mance of the four pre-selected proteins was explored in 92

controls, 149 patients with mild cognitive impairment

(MCI), and 69 patients with AD dementia. Heart-type fatty

acid binding protein (hFABP) and vascular endothelial

growth factor (VEGF) CSF concentrations distinguished

between healthy controls and patients with AD dementia

with a sensitivity and specificity of 57 and 35 %, and 76 and

84 %, respectively. The optimal classification was achieved

by a combination of the two additional CSF biomarker

candidates in conjunction with the three established mark-

ers Amyloid-b (Ab)1–42, total-Tau (tTau), and phosphory-

lated-Tau (pTau)181, which resulted in a sensitivity of 83 %

and a specificity of 86 %. hFABP also predicted the pro-

gression from MCI to AD dementia. The present study

provides evidence in support of hFABP and VEGF in CSF

as AD biomarker candidates to be used in combination with

the established markers Ab1–42, tTau, and pTau181.
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Introduction

The accurate and reliable diagnosis of Alzheimer’s disease

(AD) at an early clinical stage is of high public interest and

a prerequisite for the selection of appropriate candidates for

clinical treatment trials. Neuropsychological tests are able

to predict in vivo AD pathology to a certain degree [43], and

great hopes are being placed on biomarkers such as cere-

brospinal fluid (CSF) proteins and neuroimaging studies.

The CSF reflects biochemical processes in the brain, and

concentrations of total-Tau (tTau), phosphorylated-Tau

(pTau)181 and Amyloid-b (Ab)1–42 in CSF are routinely

assessed as part of the dementia diagnostics process.

Decreased CSF levels of Ab1–42, due to its cerebral depo-

sition into Ab plaques, and increased levels of tTau/
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pTau181, related to axonal damage, discriminate with rea-

sonable accuracy between AD dementia and physiological

ageing [4, 34]. However, a substantial overlap between

control and AD groups has been repeatedly reported [17,

42], and altered concentrations of these biomarkers in CSF

have also been observed in other neurodegenerative disor-

ders such as frontotemporal lobar degeneration [4, 5, 26].

Furthermore, markers of Ab pathology and axonal injury

only provide information on two selected, albeit central,

aspects of a multi-factorial pathological process; other

important factors are being disregarded. Consequently, an

urgent need remains for a more comprehensive set of

markers covering different aspects of AD.

In theory, a hypothesis-driven knowledge-based

approach to biomarker development can be distinguished

from a hypothesis-generating unbiased approach. While the

knowledge-based approach relies on the understanding of

the central pathomechanisms of AD, an unbiased procedure

such as proteomics potentially increases the predictive

power, relating to multiple interacting biological processes,

which has led to the identification of a number of novel

candidate AD biomarkers [21] using various technologies

[5]. In the past, small sample sizes and technological

shortcomings made it difficult to produce reliable results. A

recently developed bead-based Multi-Analyte Profiling

(MAP) panel (Human Discovery MAP, Myriad RBM Inc.,

Austin, TX, USA) allows for the simultaneous measure-

ment of multiple analytes. This Luminex multiplex plat-

form has been associated with less intra- and inter-assay

variability [14] and appears to present certain advantages

over traditional enzyme-linked immunosorbent assays

(ELISA) with respect to analytical precision [33, 40].

Despite the clear advantages of multiplex approaches to

candidate biomarker discovery, problems with the repli-

cation of intriguing results in independent samples may

arise due to between-cohort heterogeneity and different

technologies used. Without replication, however, the clin-

ical relevance of such findings is in question. Therefore, the

main aim of the present study was to apply rigorous

selection criteria to published CSF proteomic studies dif-

ferentiating AD dementia from healthy controls in order to

identify the most consistent findings to be replicated in a

large independent cohort from the Alzheimer’s disease

neuroimaging (ADNI) study.

Methods

Study design and sample

All studies in PubMed/MEDLINE (http://www.ncbi.nlm.

nih.gov/pubmed/) that provided information on CSF pro-

tein concentrations in AD using the Human Discovery

MAP Myriad RBM multiplex assay were identified. CSF

proteins were selected for replication in the present study if

they were significant in the differentiation between AD

dementia and healthy controls in at least two previous

reports. Applying this selection procedure, four studies

involving five independent cohorts were found [6, 12, 15,

25], resulting in a total of 41 significant proteins, eight of

which were mentioned in at least two reports. Three of

these eight proteins, heart-type fatty acid binding protein

(hFABP), interleukin-7 (IL7), and vascular endothelial

growth factor (VEGF), were reported in three studies

confirmed by at least two different statistical procedures;

the other five proteins, alpha-fetoprotein (AFP), Eotaxin/

CCL11, C-reactive protein (CPR), interleukin-17 (IL17),

and TNF-related apoptosis-inducing ligand receptor 3

(TRAIL-R3), were reported in two studies using a single

statistical method (see Supplemental Table 1 for further

characteristics of the study samples and the PubMed/

MEDLINE search strategy).

The data used in this study were obtained from the

ADNI database at www.loni.ucla.edu/ADNI on 17 January

2012. Information from 311 subjects was available,

including 92 healthy elderly control subjects (CON), 149

patients with mild cognitive impairment (MCI), and 69

patients with AD dementia. In the MCI group, clinical data

were available from follow-up visits conducted up to

60 months after the baseline assessment. The study was

approved by the institutional review boards of all partici-

pating centres, and written informed consent was obtained

from all participants or authorised representatives after

extensive description of the ADNI according to the 1975

Declaration of Helsinki. The study is registered at Clini-

calTrials.gov (registration number NCT00106899, http://

clinicaltrials.gov).

The ADNI recruitment and inclusion procedures are

described in detail at www.adni-info.org. Briefly, at base-

line, subjects in ADNI were between 55 and 90 years of

age, had a modified Hachinski score B4, and had at least

6 years of education. Patients with AD met the National

Institute of Neurological and Communicative Disorders

and Stroke-AD and Related Disorders Association (NIN-

CDS-ADRDA) criteria and had a Mini-Mental-State

Examination (MMSE) score between 20 and 26 (inclusive)

and a Clinical Dementia Rating (CDR) score of 0.5 or 1.

Patients with amnestic MCI had MMSE scores between 24

and 30, a CDR score of 0.5, memory complaints but no

significant functional impairment, and objective memory

deficits on the Wechsler Memory Scale Logical Memory II

test. Cognitively normal subjects had MMSE scores

between 24 and 30, a CDR score of 0, no evidence of

depression, and no memory complaints. After the baseline

visit, follow-up visits were conducted at six- or 12-month

intervals up to a maximum of 6 years (see Supplemental
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Table 2 for a listing of individual follow-up times in the

MCI group). The full list of inclusion/exclusion criteria can

be accessed at http://www.adni-info.org.

Multiplex protein assays

Baseline CSF samples were obtained from the study par-

ticipants and analysed at the ADNI biomarker core labo-

ratory at University of Pennsylvania according to published

methods [19, 32]. Briefly, CSF samples were obtained from

the participants in the morning and put into the freezer at

-80 �C; aliquoting and processing were conducted

according to ADNI standardised operating procedures. The

CSF concentrations of Ab1–42, tTau, and pTau181 were

measured using the multiplex xMAP Luminex platform

with Innogenetics immunoassay kit-based reagents (INNO-

BIA AlzBio 3; Ghent, Belgium; for research use–only

reagents). In addition, a 159 analytes panel was developed

for the Luminex xMAP platform (Luminex Corp., Austin,

TX, USA) by Myriad RBM at the service providers’ facil-

ities. The detailed quality control procedures and results are

available from the ADNI website (http://adni.loni.ucla.

edu/2012/01/biomarkers-consortium-adni-csf-multiplex-

immunoassay-proteomics-data-available-Tuesday-January-

3rd-2012-2/). Data of 83 analytes, which had passed the

strict ADNI quality control procedures, were considered for

the present study (see Supplemental Table 3 for a complete

listing). CSF concentrations of AFP, Eotaxin/CCL11, IL7,

and IL17 were not available from ADNI; the final dataset

for the present analysis therefore included hFABP, VEGF,

CRP, and TRAIL-R3.

Statistical analysis

All statistical analyses were performed using SPSS, v19.0

(IBM corp., Somers, NY, USA) and R-Software, v2.13.0

with the Q value package (http://genomics.princeton.edu/

storeylab/qvalue/) [37]. Data are expressed as means and

standard deviation (SD). All tests were two-sided, and a

p value less than 0.05 was considered significant. The false

discovery rate (FDR) [1], which controls the expected

proportion of incorrectly rejected null hypotheses (type-I

errors), was applied when appropriate to adjust for multiple

comparisons, that is, results at q \ 0.05 were regarded

significant. All protein concentrations were normally

distributed.

Univariate analysis of covariance (ANCOVA) was used

to determine the CSF analytes that differed between the

CON and AD dementia groups; the models were adjusted

for the following variables: age, gender, education, Apo-

lipoprotein E (ApoE) e4 carrier status, presence of cardio-

vascular disease or diabetes mellitus, and history of stroke

or malignancies. A binary, stepwise forward logistic

regression (LR) assessed the ability of the pre-specified

biomarker models to differentiate between AD dementia

and CON, using the significant proteins from the

ANCOVA as predictors. A receiver operating characteris-

tic curve (ROC) analysis was applied to determine the

sensitivity, specificity, positive and negative predictive

values (PPV, NPV, respectively), and accuracy of the best

model. In order to compare the accuracy of the additional

CSF biomarker candidates with the traditional AD markers,

concentrations of Ab1–42, tTau, and pTau181 were tested in

additional LR models.

In addition, a Cox proportional hazard model, with

covariates as specified for the ACONVA, was applied to

assess the ability of baseline biomarkers to predict the

progression from MCI to AD dementia. Data from patients

who did not convert during the follow-up period were

statistically censored at the date of the last assessment.

Results

The characteristics of the study sample are presented in

Table 1. Compared with the controls, patients with AD

dementia exhibited an AD-typical profile characterised by

a higher proportion of ApoE e4 carriers, lower Mini-Men-

tal-State Examination (MMSE), and higher AD Assess-

ment Scale-cognitive subscale (ADAS-cog) scores, as well

as lower Ab1–42, higher tTau, and higher pTau181 concen-

trations in CSF. After adjustment for the covariates spec-

ified above, the ANCOVA analysis showed significant

differences between the AD dementia and CON groups for

hFABP (p \ 0.001) and VEGF (p = 0.03) but not for CRP

and TRAILR3 levels in CSF (Table 2 and Fig. 1). Age

showed significant effects in these ANCOVA models (for

hFABP: p = 0.03, for VEGF: p \ 0.001). The other

covariates were not significant.

According to the results of the ANCOVA, hFABP and

VEGF were used as predictors in the subsequent binary LR

models for the differentiation between CON and AD

dementia. The single protein LR models showed a sensi-

tivity of 56.52 % and a specificity of 76.09 % for hFABP,

and a sensitivity of 34.78 % and a specificity of 83.70 % for

VEGF. The LR model including both Myriad RBM analytes

(LRCSF-new) showed comparable results with a sensitivity of

71.01 % and a specificity of 80.43 %. The overall classifi-

cation performance for the diagnosis of AD dementia was

improved compared to the single marker models (area under

the curve (AUC): hFABP 0.71, VEGF 0.63, LRCSF-new

0.84). In comparison, the regression model restricted to the

three traditional CSF biomarkers (LRCSF-trad) resulted in a

sensitivity of 78.26 % and a specificity of 79.12 % for

distinguishing between AD dementia and CON. A final LR

model (LRCSF-comb) including both Myriad RBM analytes
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in addition to the three traditional markers resulted in

the best classification with a sensitivity of 82.61 %, a

specificity of 85.71 %, and an AUC of 0.91 (Table 3). A

comparison of the AUCs of the models LRCSF-comb and

LRCSF-trad using the tool StAR (http://protein.bio.puc.cl/

cardex/servers/roc/roc_analysis.php) showed a trend

towards a statistically significant difference (p = 0.06).

Within the follow-up period (mean 2.81, SD

0.97 years), 73 patients with MCI progressed to AD

dementia, whereas 76 remained in the MCI stage; the

length of the follow-up time did not significantly differ

between the two MCI sub-groups (Table 1). CSF hFABP,

but not VEGF, concentrations differed between the two

MCI sub-groups (Fig. 1); therefore, only hFABP was

included in the univariate Cox proportional hazards model,

which indicated that the progressive MCI sub-group had

significantly higher baseline CSF hFABP concentrations

than the stable MCI sub-group (hazard ratio [HR] 1.001,

p = 0.04) (Table 4). However, this result was not signifi-

cant anymore (HR = 1.001; p = 0.13) when additional

covariates as specified above were entered into the model.

Discussion

We aimed to provide a robust replication of previous CSF

proteomic studies in AD presenting the first report on data

from the ADNI. With a strong a priori hypothesis derived

from published studies, we corroborate the significant

concentration differences between AD dementia and

physiological ageing for hFABP and VEGF in CSF. Our

results confirm the good diagnostic accuracy of the com-

bined use of the three established CSF biomarkers Ab1–42,

tTAU, and pTau181 (LRCSF-trad model), which was

improved by adding the two analytes hFABP and VEGF

(LRCSF-comb). In addition, hFABP was also useful in pre-

dicting clinical progression in MCI.

Sporadic AD is a biologically complex neurodegenera-

tive disease that is unlikely to be caused by any single

pathogenic event (or cascade of events). Therefore, the

traditional biomarkers Ab1–42 and tTau/pTau181 only rep-

resent two selected aspects of the multi-factorial nature of

AD, which restricts their diagnostic utility [29, 32, 39].

Table 1 Characteristics of the study sample

CON MCI-stable MCI-progressive AD dementia

Na 92 76 73 69

Age (years) 75.75 (5.45) 74.78 (7.42) 75.01 (7.17) 75.01 (7.62)

MMSE (points) 29.09 (1.01) 27.26 (1.67) 26.51 (1.81) 23.53 (1.91)*

ADAS-cog (points) 9.38 (4.22) 17.06 (6.77) 20.85 (5.87) 28.60 (9.11)*

Education (years) 15.58 (2.93) 16.42 (2.72) 15.56 (3.11) 15.16 (2.98)

Sex (male/female) 46/46 55/21* 47/26* 39/30

ApoE e4 (% carrier) 23.91 42.11* 65.75* 71.01*

Ab1–42 (pg/mL) 207.74 (53.51) 172.20 (54.71)* 146.73 (39.29)* 141.91 (34.87)*

tTAU (pg/mL) 68.96 (26.55) 94.09 (49.85)* 116.71 (55.60)* 121.63 (60.30)*

pTAU181 (pg/mL) 24.24 (12.70) 32.26 (14.82)* 40.22 (15.66)* 41.12 (20.13)*

Data presented as mean (SD) where appropriate

CON cognitively normal controls, MCI mild cognitive impairment, MCI-progressive patients with MCI who progressed to AD dementia,

MCI-stable patients with MCI who remained cognitively stable, AD Alzheimer’s disease, MMSE mini-mental-state examination, ADAS-cog

Alzheimer’s Disease Assessment Scale—cognitive subscale; ApoE apolipoprotein E, Ab1–42 Amyloid-b1–42, tTau total-Tau, pTau181 phos-

phorylated-Tau181

* Significant differences compared with the CON group at q \ 0.05
a N for the sample with CSF results

Table 2 Cerebrospinal fluid protein concentrations in Alzheimer’s

disease and healthy controls

Group (N) Concentration p value*

hFABP (pg/mL) CON (N = 92) 1503.78 ± 427.64 \0.001

AD (N = 69) 1837.68 ± 474.19

VEGF (pg/mL) CON (N = 92) 15.30 ± 1.87 0.03

AD (N = 69) 14.49 ± 1.90

CRP (ug/mL) CON (N = 92) 0.07 ± 0.04 0.89

AD (N = 69) 0.08 ± 0.08

TRAILR3 (ng/mL) CON (N = 92) 0.81 ± 0.12 0.95

AD (N = 69) 0.81 ± 0.13

Data presented as mean ± SD

CON cognitively normal controls, AD Alzheimer’s disease dementia,

CRP C-reactive protein, hFABP heart-type fatty acid binding protein,

TRAILR3 TNF-related apoptosis-inducing ligand receptor 3, VEGF

vascular endothelial growth factor

* p values were obtained by exploring log-transformed biomarker

concentrations by analysis of covariance (ANCOVA), adjusting for

age, gender, education, ApoE e4, cardiovascular disease, diabetes

mellitus, stroke, and malignancies
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Proteomics in AD allows a large number of proteins to be

studied simultaneously in order to obtain accurate and

comprehensive data about their structure, functional char-

acterisation, and quantification [47]. One major obstacle of

applying a proteomic approach to disease classification is

the poor generalizability of the results across various

datasets; often only a minimal overlap between studies is

obtained, probably due to different experimental designs

and diverse analytical methods as well as heterogeneous

cohorts [49]. The validation phase of proteomic studies

seems to be more challenging but also more valuable than

the discovery phase since there are a limited number of

replication studies compared with the large number of

profiling works focused on discovery [47, 48]. In three

previous independent proteomic studies, CSF hFABP is

suggested as a potential biomarker for AD using the same

multi-analytes platform that has also been applied in ADNI

[6, 15, 25]. A fourth study also found a statistical trend for

concentration differences of hFABP in CSF between AD

dementia and physiological ageing [12]. Since the Bon-

ferroni correction procedure applied in the latter study may

lead to loss of statistical power [8], we recalculated the

published p value using an FDR correction, which resulted

in a significant finding at q = 0.04. After this recalculation,

the present study is the fifth report, or sixth independent

cohort, in which hFABP has been successfully used to

differentiate between AD dementia and normal ageing.

Similarly to hFABP, VEGF has been suggested as a

Fig. 1 Cerebrospinal fluid concentrations of the two new biomarkers

in the study groups CSF cerebrospinal fluid, CON cognitively normal

controls, MCI mild cognitive impairment, MCI-progressive patients

with MCI who progressed to AD dementia, MCI-stable patients with

MCI who remained cognitively stable, AD Alzheimer’s disease,

hFABP heart-type fatty acid binding protein, VEGF vascular endo-

thelial growth factor

Table 3 Performance of the biomarker sets in the differentiation between healthy controls and the Alzheimer’s disease dementia group

Ab1–42 tTAU pTAU181 LRCSF-trad hFBAP VEGF LRCSF-new LRCSF-comb

ROC AUC 0.83 0.80 0.80 0.88 0.71 0.63 0.84 0.91

Sensitivity (%) 79.71 60.87 60.87 78.26 56.52 34.78 71.01 82.61

Specificity (%) 73.91 84.78 85.71 79.12 76.09 83.70 80.43 85.71

Cut-off (pg/mL) 160.96 97.60 34.25 NA 1768.36 13.67 NA NA

ACC (%) 76.40 74.53 75.00 78.75 67.70 62.73 76.40 84.38

PPV (%) 69.62 75.00 76.36 73.97 63.93 61.54 73.13 81.43

NPV (%) 82.93 74.29 74.29 82.76 70.00 63.11 78.72 86.67

ROC receiver operating characteristic, AUC area under the curve, ACC classification accuracy, PPV positive predictive value, NPV negative

predictive value, Ab1–42 amyloid-b1–42, tTau total-Tau, pTau181 phosphorylated-Tau181, hFABP heart-type fatty acid binding protein, VEGF

vascular endothelial growth factor, LRCSF-new logistic regression model with the 2 novel CSF markers hFABP and VEGF as the independent

variables, LRCSF-trad logistic regression model with traditional CSF biomarkers Ab1–42, tTau, and pTau181 as the independent variables,

LRCSF-comb logistic regression model with the combination of 5 CSF proteins as the independent variables, NA not applicable
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potential biomarker of AD in a total of four studies with

five independent cohorts. Previous findings in relation to

the protein CRP and TRAIL-R3 could not be replicated in

our study.

Heart-type fatty acid binding protein (hFABP) (also

known as FABP3) is a low molecular mass (15 kDa) lipid-

binding protein highly expressed in the adult human brain,

particularly in pons and frontal lobe, which participates in

neurite formation and synapse maturation [27, 41, 42].

Considering its ability to change the lipid composition and

fluidity of the cell membrane through the regulation of

long-chain fatty acids [42], hFABP may facilitate signal

transduction, membrane functionality, and maintaining the

balance between phospholipid and arachidonic acid in the

adult brain; consequently, the involvement of hFABP in

cellular dysfunction related to neurodegenerative disorders

such as AD has been suggested [36]. Central and peripheral

hFABP has previously been proposed as an effective

marker for mild traumatic brain injury and stroke [20, 44,

46]. Several recent works using conventional ELISA

methods have demonstrated increased hFABP CSF con-

centrations in patients with AD dementia [2, 10, 46].

However, decreased hFABP has also been reported in AD

brain samples in a single study [9]. Heretofore, the cerebral

physiological function of hFABP remains elusive. In the

present study, both patients with AD dementia and pro-

gressive MCI had higher hFABP levels in CSF when

compared to cognitively healthy controls, but no difference

was seen between the AD dementia group and the pro-

gressive MCI sub-group. This finding may suggest that

hFABP CSF concentrations are already increased in early

clinical stages of AD and that they remain unchanged

thereafter; this finding is also supported by the contribution

of hFABP to the prediction of clinical progression in MCI.

Since no association between hFABP and Ab1-42 was noted

in our study, hFABP may be an indicator of a different

pathophysiological aspect related to the clinical signs of

sporadic AD such as concomitant cerebrovascular disease

[2, 10]. In this scenario, disrupted cellular metabolism due

to elevated hFABP levels may have detrimental effects in

individuals with altered Ab metabolism. Recent evidence

also indicates that increased hFABP in CSF is also found in

Creutzfeldt–Jakob disease, Parkinson disease dementia,

and dementia with Lewy bodies [10, 22, 23, 35], suggest-

ing that hFABP is an unspecific marker of brain damage.

Vascular endothelial growth factor (VEGF) is a hypoxia-

induced signalling protein involved in vasculogenesis and

angiogenesis that is closely related to central and peripheral

inflammation, injury, diabetes, malignancy, and cardiovas-

cular disorders [31]. Recent reports suggest that VEGF

might also be relevant to AD [28]. In the brain of patients

with AD, increased expression of VEGF was detected not

only in clusters of reactive astrocytes but also co-localised

with senile plaques; in vitro, VEGF binds with high affinity

to pre- and co-aggregated Ab and is released slowly from

co-aggregated complexes, suggesting a role of VEGF in the

AD pathophysiological process [7, 18, 45]. In CSF studies

on patients with AD dementia, both increased [30, 38] and

unaltered concentrations of VEGF have been reported [3].

In contrast to these observations, we report decreased CSF

concentrations of VEGF in AD dementia compared with

healthy controls and patients with MCI, which may be

explained by the trapping of VEGF in cerebral Ab plaques.

Limitations of our study include the lack of histopa-

thological confirmation of AD diagnoses; however, the

validity of the clinical diagnoses at specialised centres has

repeatedly been confirmed by autopsy series [24]. The

patients in ADNI were recruited from specialised univer-

sity centres and may therefore not truly represent the whole

population with AD. hFABP and VEGF are also vascular

risk factors related to cardiovascular disorders. We did not

detect associations of these two factors with cardiovascular

risk in the current cohort, which may be attributed to the

exclusion of vascular dementia in ADNI or to the con-

founding effects of the presence of AD pathology; there-

fore, the effects of vascular changes should be studied in

more appropriate cohorts. Moreover, proteins from previ-

ous studies were selected according to pre-specified criteria

but irrespective of other sample characteristics such as

ethnicity. Some of these between-group differences may

have affected the biomarker candidate findings [11].

Finally, in our analyses, age was a significant factor, which

will therefore also have to be accounted for when using

hFABP and VEGF in future diagnostic settings.

To sum up, our study supports hFABP and VEGF in

CSF as AD biomarker candidates to be used in conjunction

Table 4 Univariate Cox regression model of cerebrospinal fluid

biomarkers in the differentiation between the progressive and stable

mild cognitive impairment sub-groups

Regression

coefficient

[B]

p value Estimated

hazard [Exp

(B)]

95.0 %

confidence

interval for

hazard ratio

[Exp (B)]

Lower Upper

hFABP 0.001 0.04* 1.001a 1.000 1.002

Ab1–42 -0.008 \0.01* 0.992a 0.987 0.998

tTAU 0.004 0.04* 1.004a 1.000 1.008

pTAU181 0.019 \0.01* 1.019a 1.005 1.033

hFABP heart-type fatty acid binding protein, Ab1–42 amyloid-b1–42,

tTau total-Tau, pTau181 phosphorylated-Tau181

* Significant at p \ 0.05
a The estimated hazard refers to the risk increase associated with a 1

unit increase in the value of the covariate, that is, a 1 pg/mL con-

centration increase for the tested proteins
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with the more established markers Ab1–42, tTau, and

pTau181. Including the two Myriad RBM analytes in the

diagnostic algorithm seemingly provides an added value

over the traditional CSF markers that may be of clinical

relevance. Our findings also stress the notion that treating

AD as a complex disorder not exclusively related to Ab
pathology may have important diagnostic, and probably

also therapeutic, implications. In line with the studies

conducted to establish Ab1–42 and tau as clinical bio-

markers for AD [13, 16], we propose a multi-centre study

including patients with different neurodegenerative disor-

ders and healthy controls in order to define cut-off values

for hFABP and VEGF to be applied within the framework

of an optimised diagnostic algorithm.
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